Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
نویسندگان
چکیده
In this article we concisely present severalmodern strategiesthat are applicable to drift-dominated carriertransport in higher-orderdeterministicmodels such as the driftdiffusion,hydrodynamic, and quantumhydrodynamic systems. The approachesinclude extensions of “upwind” and artificialdksipation schemes, generalizationof the tradltional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwindPetrov Galerkin (SUPG), “entropy” variables, transformations, least-squaresmixed methods and other stabilized Galerkinschemessuch as Galerklnleast squaresand dkcontinuous Galerkin schemes. The treatment is representativerather than an exhaustive review and several schemesare mentioned only briefly with appropriatereferenceto the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examplesfrom our recent researchtests with some of the methods. A second aspect of the work deals with algorithmsthat employ unstructured grids in conjunction with adaptive refinementstrategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dialan-operator approaches such as that used in the industrial simulatorPROPHET, and object-oriented software support such as those in the SANDIA National Laboratory frameworkSIERRA.
منابع مشابه
Improving the Thermal Characteristics of Semiconductor Lasers Using a New Asymmetric Waveguide Structure
Self-heating leads to a temperature rise of the laser diode and limits the output power and efficiency due to increased loss and decreased differential gain. To control device self-heating, it is required to design the laser structure with a low optical loss, while the heat flux must spread out of the device efficiently. In this study, a new asymmetric waveguide design is proposed and th...
متن کاملThe Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop
In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...
متن کاملSemiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...
متن کاملBehavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS
During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...
متن کاملDesign of a new asymmetric waveguide in InP-Based multi-quantum well laser
Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000